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Abstract. We examine some properties of the electronic self-energy potential for metallic 
systems within the GW-plasmon-pole approximation. The self-energy is found to be highly 
state dependent. States with bonding character are depressed relative to states with less 
bonding character when compared to density functional eigenenergies, irrespective of 
whether they are occupied or not. 

1. Introduction 

Understanding the electronic properties of systems of electrons and ions is central to 
solid state physics, yet despite all the effort that has been devoted to the subject there 
remains much detail to be unravelled about electronic interactions. Since the sixties, 
density functional theory (DFT) [l] in its local approximation has been the conventional 
way to describe electronic structure in solids. DFT has been very successful in accounting 
for ground-state properties, and although DFT eigenvalues have no obvious physical 
meaning, they are widely interpreted as single-particle excitation energies. Only the 
formal resemblance between the DFT expression and the many-body expression for 
quasiparticle properties [2] lends some credence to this interpretation. It is somewhat 
surprising that there even exists such a good qualitative correspondence between DFT 
eigenvalues and measured single-particle excitations. In DFT, a local potential (the 
exchange-correlation potential) common to all one-electron states is designed to gen- 
erate the correct ground-state density. It is too much to expect that this potential will 
also describe the exact physical nature of the band structure [3]. 

The so-called band-gap problem for insulators and semiconductors is an obvious 
example where DFT has to be interpreted carefully [3-61. Perdew and Levy [3] and Sham 
and Schluter [4] showed that there is adiscontinuity in the derivative of theDFTexchange- 
correlation potential V,, on adding a hole or electron to the ground state. The DFT band 
gap differs from the difference between the lowest unoccupied state and the highest 
occupied state for the N-body system by the discontinuity in V,, on adding an electron 
to the N-body system. In the local density approximation to V,, there is no discontinuity 
in the exchange-correlation potential, but in a numerical study by Godby, Schluter and 
Sham [7], it was shown that even ‘true’ DFT still underestimates the measured band-gap 

t Permanent address: Physics Department, University of the Witwatersrand, PO Wits, Johannesburg 2050, 
South Africa. 
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energy and that this is therefore an intrinsic property of DFT, not a feature of the local 
density approximation. Recent calculations [7-91 demonstrated that reasonable band 
gaps can be calculated within the GWA-RPA approximation to the quasiparticle 
expression. These calculations demonstrated that the dispersion of the bands cannot be 
reproduced by a state and energy independent potential, since such a potential excludes 
some essential physics (see also [lo-121). This conclusion was reached as early as 1971 
by Kane and others [38,39]. 

In recent years as experimental and theoretical techniques improved, differences 
between experimental and theoretical results for metals became more obvious as well, 
and the need for a more complete theoretical treatment became clear. Accurate 
measurements of band widths in simple metals, for example [13-161, showed a con- 
siderable deviation from predicted values. Studies in the late sixties [ 17-21] showed that 
electron-electron interactions in a homogeneous electron gas at metallic densities lead 
to band-width narrowing, but the effect was not large enough to account for differences 
between DFT and experimetnal results. This stimulated a number of theoretical attempts 
[14,21-271 to improve the prediction of the band width. Discrepancies between theory 
and experiment for transition metals have also long been known (see L C Davis for 
references [29]). Simple local approximations to the self-energy [28] improved the 
results, but significant differences remain. 

In most of the theoretical studies, the GW approximation with neglect of vertex 
corrections was used. Vertex corrections describe the correlation between the position 
of an electron and the positions of electrons in the local screening charge. Neglect of 
vertex corrections can lead to unphysical results. An example is the pair correlation 
function in a homogeneous electron gas which becomes negative at short separations 
when vertex corrections are neglected. Northup and Louie [22], Surh, Northrup and 
Louie [23] and Lyo and Plummer [14] found that the inclusion of vertex corrections in 
the screened Coulomb interaction increases the band-width reduction in alkali metals. 
In a recent publication, Mahan and Sernelius [27] demonstrated that the inclusion of 
vertex corrections in both the numerator of the self-energy and the dielectric function 
nearly cancel, returning the results to values close to those of the GW-RPA calculation. 
In some of the recent calculations [8,22] the real part of the self-energy is obtained by 
solving Dyson’s equation for the Green function. Lifetime effects (imaginary part of the 
self-energy) are neglected. Reasonable results are only obtained if the internal undressed 
Green functions are replaced by dressed ones. This is done in an approximate way by 
replacing the unperturbed energies in the Green function by the perturbed ones and 
iterating to self-consistency. Rice [20] argued that this is effectively equivalent to sum- 
ming over an infinite class of self-energy diagrams but that in the above procedure 
important diagrams are multiply counted. It is therfore difficult to decide how good the 
results obtained are. 

In this paper we do not attempt to address the uncertainties surrounding the GW 
approximation, but based on the success achieved using this approximation [7-10,22- 
231 we take it as a good starting point for examining some of the properties of the self- 
energy potential for a number of model systems in a qualitative way. In semiconductors 
and insulators there is a discontinuity in the self-energy between the valence and con- 
duction bands. This feature is absent when the difference in symmetry between the 
valence and conduction band states is not taken into account [ 12,281, Here we investigate 
the state and energy dependence of the GW self-energy for metallic systems. 

In section 2 we discuss the theoretical model. In section 3 some numerical details are 
summarised, while the results for a number of model systems are presented in section 
4. Finally in section 5 we summarise and discuss the work presented in this paper. 
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2. Theoretical model 

In the Green function formalism [2] the N-particle Schrodinger equation reduces to a 
quasiparticle expression: 

The Hartree Hamiltonian h,(r) contains contributions from the kinetic energy, the 
external potential and the Hartree potential. The self-energy 2(r ,  r ’ ,  w )  is a non-local, 
energy dependent non-Hermitian operator. Due to the non-Hermiticity of the Ham- 
iltonian, the quasiparticle energies are in general complex. The real part is related to 
the excitation energies, and the imaginary part is related to the finite lifetime of the 
excitations. The quasiparticle functions V ( r )  form a complete set of states, but in general 
are neither normalised nor linearly independent. 2(r ,  r ’ ,  w )  is related via a coupled set 
of integral equations to the Green function 

the screened Coulomb interaction 

W(r ,  r ’ ,  w )  = dr”  ~ - ‘ ( r ,  r’’, w)u(r”, r ’ )  I (3) 

and the vertex function 

r = 1 + 6~/6v.  (4) 

Here E~ stands for the Fermi energy, u(r - r ’ )  denotes the bare Coulomb interaction 
and ~ ( r ,  r ’ ,  w )  is the dielectric matrix. In the GW approximation vertex corrections are 
neglected. This corresponds to the first-order term in a series expansion of the self- 
energy in terms of the screened interaction W ,  leading to the expression for the self- 
energy 

G(r, r ’ ,  CL) - u’)W(r’,  r,  U ’ )  ( 5 )  d eiS + U ’  z(r, r ’ ,  w )  = - 
2ni ‘ I  

where 6’ is an infinitesimal positive number. The same approximation for the dielectric 
matrix leads to the random-phase approximation (RPA) 

For metallic systems, few attempts have been made to calculate the dielectric matrix 
for realistic systems even in RPA. In this work we model the dielectric matrix following 
a procedure suggested by Hybertsen and Louie [30]. We write the screened interaction 
as [30] 

W(r ,  r ’ ,  0) = 3 [ W h o m ( r  - r ’ ;  r , ( r ’ ) )  + W h o m ( r ’  - r;  r , ( r ) ) ]  (7)  

where rs(r) is the local electron density parameter at r. The local screening response is 
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determined by the Lindhard dielectric function for a homogeneous electron gas. The 
Fourier transform of equation (7) yields 

1 
E ,& (4, 0) = ?( u(q + G) 1 d r E - ~  ( I q + G I ; rs ( r )  ) exp[i(G - G ’ ) - r ]  

+ u ( q + G ’ )  i dr~-’ ( lq+G’I;r , (r ) )exp[ i (G’-C) .r ] )  (8) 

where G is a reciprocal lattice vector and q is a vector in the first Brillouin zone. The 
diagonal terms of E - ~  give an average of the local screening response at different points 
of the Brillouin zone while the off-diagonal terms contain information about local fields 
or the inhomogeneity of the system. We extend the static response function to finite 
frequencies using the generalised plasmon-pole model of von der Linden and Horsch 
[9]. First we symmetrise the static dielectric function to give 

cEA,(q, 0) = E G & ( q ,  0)Iq + GI/Iq + G’I 

E,&,(q, 0) = 6 G G ’  + C. UqL(G)(EF1(q) - l)U:i(G’). 

(9) 

and express it in its eigen-representation [30] 

(10) 
r = l  

Here U,,(G) is the G component of the ith eigenvector of i - ’ (q) ,  with corresponding 
eigenvalue &;l (q ) .  The generalised plasmon-pole approximation at finite frequencies 
then becomes [9] 

where 

and 

Here = 4np(0) is the free electron plasma frequency at the average ground-state 
electron density and p(G) are the components of the Fourier transform of the ground- 
state charge density. The diagonal terms of B satisfy thef-sum rule [2], and the plasmon 
frequencies (13) are positive since the eigenvalues E ; l ( q )  lie in the interval (0 , l )  [31]. 
Within the Gw-plasmon-pole approximation, the self-energy is real for 

- wpl < w < + up, for metallic systems and consequently the Hamiltonian (1) is 
Hermitian in thijrange of energies. 

For a given starting potential Zo(r ,  r ’ ,  w ) ,  equation (1) defines a set of wavefunctions 
and energies that can be used to construct a new self-energy operator Xl(r, r ’ ,  w ) .  This 
procedure can be repeated until self-consistency is achieved, but as pointed out in the 
introduction there is some uncertainty concerning the validity of this approach. In this 
paper we study some of the differences and similarities between DFT eigenvalues and 
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quasiparticle energies in a qualitative manner and stop after the first iteration. We start 
from a DFT Hamiltonian with a given V(r): 

H(r)  = T + V(r)  (14) 

V(r> = + VH + V%F (15) 

where Tis the kinetic energy and 

with VeXt(r) an unspecified external potential, VH(r) the Hartree potential, and 
VrDF(r) a local approximation to the DFT exchange-correlation potential. For a given 
V(r) ,  equation (14) defines a ground-state charge density from which the Hartree, 
exchange-correlation and then the external potential can be calculated. Leaving the 
external potential initially unspecified obviates the need for the self-consistency loop 
generally required to solve the DFT Hamiltonian. In this work we use the exchange- 
correlation potential calculated by Hedin [19] in its parameterised form [32]. This is 
consistent with the GW approximation used in the current study. 

Hybertsen and Louie [8] found that the DFT wave functions and quasiparticle func- 
tions in their calculations were almost identical, with an overlap of more than 99%. We 
confirmed this finding in our calculations. Using this fact, the differences between the 
DFT eigenvalues and quasiparticle energies for a given state in its lowest approximation 
[9] can be expressed as a single matrix element 

AX = (qz" lC(~9,p) - Vgm 1 q;"). (16) 
After solving the DFT Hamiltonian (14) we calculate the self-energy using the eigenvalues 
and eigenfunctions of H ,  and then solve Dyson's equation to obtain ~ 4 , p .  

The Gw-plasmon-pole approximation leads to the following expressions for the self- 
energy matrix elements in the DIT basis functions: 

where 

and 
~ BZ occ 

3. Numerical details 

The calculations were carried out in momentum space. Wave functions were expanded 
in plane waves and for all the models studied it was found that 55 plane waves were 
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sufficient. The singularities in the Brillouin zone summations in the expressions for Zco" 
and Xex were removed using the procedure proposed by Gygi and Baldereschi [33]. The 
expressions for the self-energy terms were further smoothed across the Fermi surface 
with a Fermi function, and the Brillouin zone summations for the smoothed functions 
were carried out using the special points method of Monkhorst and Pack [34]. The 
calculations were performed for a BCC structure and we used eight special points in the 
irreducible wedge of the Brillouin zone. Final results were accurate to -0.1 eV, which 
was deemed sufficient for the present qualitative study. In all the models an average 
charge density with density parameter r, = 2.5 au was used. 

4. Results for model systems 

In this section we present the results for a number of model potentials. In each case the 
total 'self-consistent' potential V(r)  in equation (14) was specified by up to three Fourier 
coefficients. With this small number of potential parameters, eigenvalues converged 
quickly with increase in the number of basis functions. Figures l(a)-(f) summarise the 
results roughly in order of increasing inhomogeneity. The Fermi energy is at 0 eV in 
each case. The deviation of the density of states as a function of energy from a simple 
square root dependence is a measure of the inhomogeneity of the system. In figure 1 we 
also show graphs of the self-energy and the exchange and correlation energies (dots) 
calculated at a number of points within the irreducible wedge of the Brillouin zone as a 
function of the DFT eigenvalues for a number of systems with different densities of states. 
For comparison we plot the values for the corresponding quantities (full curves) for a 
homogeneous electron gas at the average charge density of the system. 

It is immediately obvious that the self-energy of an inhomogeneous system is a 
sensitive function of both energy as well as wave vector and that this dependence 
becomes more evident for systems of greater inhomogeneity. From equation (16) it is 
obvious that within the approximations used in our calculations there exists a unique 
relationship between the quasiparticle energies and the self-energy matrix elements, but 
in figure 1 there is a scatter that arises from a dependence on the set of k-points at which 
the matrix elements are evaluated. The general trends remain, however, irrespective of 
the actual set of k-points chose. There is a wide scatter in Zcorr and Zex at similar energies, 
but the sum of the two terms is overal closer to the homogeneous electron gas values 
than the individual components. Deviation from the full curves in figure 1 is always in 
the opposite direction for X'"" and Zex respectively. It is therefore important to treat 
Y O r r  and Zex with the same accuracy in any calculation. The degree of cancellation of the 
two terms depends on the screened Coulomb potential and will change for different 
dielectric matrices, but the qualitative features are unlikely to be significantly affected 
by a more consistent model for the dielectric function. 

From figure 1 it is clear that 'structure' in the density of states has important con- 
sequences for the self-energy matrix elements. In figures l(a)-(d) there are two sets of 
points as the same DFT energies which can be related to a minimum in the density of 
states; these are not artifacts of the calculation. This is better demonstrated in figure 2 
where the self-energy corrections to the DFT eigenvalues are plotted. The graphs in figure 
2 correspond to the same models as considered in figure 1. For comparison we included 
a model with a gap in the density of states at the Fermi energy (figure l(f) and figure 
2(f)). Here there is a discontinuity in the self-energy correction for valence and con- 
duction band states as found in more sophisticated calculations for semiconductors and 
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Figure 1. DFT density of states, correlation energy Z'"", exchange energy Xex and self-energy 
Pas afunction ofmreigenenergies for a number of model potentials. Dots-this calculation; 
full curves-homogeneous electron gas with average charge density of unit cell. 
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Figure 2. Self-energy correction to the DFT eigenergies for the same model potentials as in 
figure 1. 

insulators [4-71, but in this instance the screened Coulomb potential is short range in 
contrast to the situation encountered in semiconductors and insulators. The feature 
found in figures 1 and 2(a), ( b ) ,  (c) and (e)-that is, the two sets of self-energy points at 
the same DFT energies-is due to the symmetry of the states involved. In figures 3 , 4  and 
5 we show the ground-state charge density and partial densities I qla(r)  for a selected 
number of states corresponding to the models shown in l ( b )  (2 (b ) ) ,  l ( d )  ( 2 ( d ) )  and l(f) 
( 2 ( f ) )  respectively. The numbers used to identify the partial densities refer to the 
corresponding numbers on the respective graphs in figure 2. It is clear that the set of 
points at lower energies in figure 2 in each case refer to states with high partial densities 
in the region of high ground-state charge density, and the points at higher energies relate 
to states with low partial densites of states in the region of high ground-state charge 
density. The states with bonding-like character-that is, states with a high partial density 
in the regions where the ground-state charge density is large-are depressed relative to 
states with less bonding-like character. This feature remains irrespective of whether the 
states are occupied or empty, as is clearly illustrated in figure 4 and figures l(d) and 2(d) .  
In this case there is a minimum in the density of states at = -3.5 eV, with a discontinuity 
in the self-energy correction across this minimum. The discontinuity is not complete; 
the point numbered 2 in figure 2(d) lies at a DFT energy above the minimum in the density 
of states, but has bonding-like character (figure 4 (4)) and the self-energy correction is 
relatively large negative. The discontinuity in the self-energy in case (f) is a consequence 
of the difference in character of the states above and below the Fermi energy as illustrated 
in figure 5 .  This confirms the conclusion reached by von der Linden and Horsch [12] that 
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0 

5 

Figure 3. Ground-state charge density (0) 
and partial densities ~ ~ n ( r ) i 2  (1-5) for 
selectedstatesinthe (1lO)plane Arbitrary 
units are used The numbers refer to the v points indicated in figure 2(b). 

the discontinuity in the self-energy across the band gap in semiconductors is closely 
related to the different symmetries of the valence and conduction band states. The 
potential used for figures l (b)  ( 2 ( b ) )  and l(c) (2(c) )  is the same, the only difference is 
that in l(c) (2(c)) the Fermi energy lies at -1 eV higher than in l ( b )  ( 2 ( b ) ) .  The wave 
functions are therefore the same in both cases, but the charge density and consequently 
the dielectric matrix is different for the two situations. Careful comparison of the case 
again shows that the split in the self-energy is more sensitive to the properties of the 
wave functions than to the position of the Fermi level. This is also evident from the 
model shown in l ( e )  (2(e) )  where the split starts at the minimum in the density of states 
about 1 eV above the Frmi energy. 

5. Summary and conclusions 

We have shown that the self-energy potential for a metallic system within the GW 
approximation is a highly anisotropic function. The sign and relative size of the self- 
energy correction depends mainly upon the symmetry of the wave functions involved. 
As a rule of thumb, states with bonding-like character, that is with a high partial density 
in the regions of high ground-state charge density, are depressed relative to states with 
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4 5 

Figure 4. Ground-state charge density (0) 
and partial densities I qe(r)l2 (1-5) for 
selectedstatesinthe(ll0)plane Arbitrary 
units are used. The numbers refer to the 
points indicated in figure 2 ( d )  

less bonding-like character. This can be important for metallic systems such as the BCC 
transition metals. For these systems [35] there is a minimum in the d-band density of 
states with the lower lying states mainly of EZg character and the higher lying states of 
T3g character. From the above work one would expect that for half filled d bands, the 
local minimum in the density of states will be enhanced by the self-energy correction. 
For occupied states the same situation may arise where states have different symmetry 
at different energy intervals as in l (d)  (2(d)) .  Lifetime effects though may wash out these 
features away from the Fermi energy. We have also confirmed that the discontinuity in 
the self-energy across the band gap found for semiconductors and insulators can occur 
even with a short range (metallic) screening potential; the discontinuity thus depends 
primarily on the different symmetry of the valence and conduction band states. In the 
model used for the dielectric matrix in this work it would be simple to replace the 
plasmon-pole approximation by an average over the dynamic Lindhard dielectric matrix 
for a homogeneous electron gas. This will considerably increase the computational 
requirements and is a project for the future, but we do not believe than any of the 
conclusions reached here would be altered. 

The self-energy is intrinsically non-local in nature, but the relationship of the matrix 
elements and the partial densities of the wave functions suggest that it may be possible 
to construct an analytic local energy dependent potential which depends on the local 
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A 5 

Figure 5. Ground-state charge density (0) 
and partial densities 17/~~(r)l* (1-5) for 
selectedstatesin the (110) plane. Arbitrary 
units are used The numbers refer to the 
points indicates in figure 2 ( f ) .  

charge density for metallic systems. This has been done for semiconductors [36,37] 
where model potentials that scale with the cube root of the charge density were 
constructed. The model potential of Hanke and Sham [37] has successfully been applied 
to a number of systems. The results presented in this paper show that it is essential to 
include an energy and wave-function dependent exchange and correlation potential in 
detailed calculations of electronic properties for metallic systems. 
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